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Figure 1: A glimpse of the diverse manipulation capabilities of MT-ACT – a single agent capable of 12 ma-
nipulation skills across 38 tasks encompassing 6 activities. For videos visit: robopen.github.io/�

Abstract: The grand aim of having a single robot that can manipulate arbitrary
objects in diverse settings is at odds with the paucity of robotics datasets. Ac-
quiring and growing such datasets is strenuous due to manual efforts, operational
costs, and safety challenges. A path toward such an universal agent would re-
quire a structured framework capable of wide generalization but trained within a
reasonable data budget. In this paper, we develop an efficient system (MT-ACT)
for training universal agents capable of multi-task manipulation skills using (a)
semantic augmentations that can rapidly multiply existing datasets and (b) action
representations that can extract performant policies with small yet diverse multi-
modal datasets without overfitting. In addition, reliable task conditioning and an
expressive policy architecture enable our agent to exhibit a diverse repertoire of
skills in novel situations specified using language commands. Using merely 7500
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demonstrations, we are able to train a single agent capable of 12 unique skills, and
demonstrate its generalization over 38 tasks spread across common daily activi-
ties in diverse kitchen scenes. On average, MT-ACT outperforms prior methods
by over 40% in unseen situations while being more sample efficient and being
amenable to capability improvements and extensions through fine-tuning.

1 Introduction

Training a robot manipulator with multiple skills requires exposure to diverse experiences and the
ability to acquire skills from a diverse data corpus. Collection of such a multi-skill data corpus in the
real world requires substantial effort and suffers from high operational costs and safety challenges.
Given the expense, efficiency in robot learning paradigms is necessary for real-world training and
deployment. While there are recent efforts in scaling real-world robotic datasets despite these chal-
lenges [1, 2, 3], efficiency seems to be overlooked in the attempts to scale [4, 5, 6, 7].

With the acknowledgment that robot learning will generally benefit as the scale of the robotics
dataset grows, the focus of our work is on investigating generalization in developing capable agents
under a given data budget. We restrict ourselves to a dataset with 7,500 robot manipulation trajec-
tories (an order of magnitude less than related works [5]) containing a diverse collection of manip-
ulation skills across different tasks. As a robot under deployment in real environments like homes,
hospitals, etc., will always find itself in unseen scenarios, we set out to develop the most capable
agent with an emphasis on its ability to generalize to novel situations within this data budget.

At first sight, wide generalization with a data budget seems like wishful thinking - while it’s possi-
ble to provide large representation capabilities to the agent’s policy, scaling without data diversity
will likely lead to overfitting and no generalization. Our insight is twofold: (1) We ensure suffi-
cient coverage of different skills in different scenarios in a dataset (of 7500 trajectories) we collect
through teleoperation. The collected dataset is diversified offline, at no extra human/robot cost, via
semantic augmentations [8, 9, 10] to aid generalization in novel situations. (2) We train a language-
conditioned manipulation policy with MT-ACT – multi-task action-chunking transformers capable
of handling the multi-modal data distribution. The architecture leverages the fact that robot move-
ments are temporally correlated, by predicting action chunks [11] instead of per-step actions, leading
to smoother behaviors and mitigation of covariance shift commonly observed in the low data imita-
tion learning regime.

Overall, we emphasize that the data efficiency lessons we present are general and will help in achiev-
ing generalizable agents independent of the available data budget. Building on these insights, we
make the following contributions:

• We present an efficient method MT-ACT designed to recover generalist agents on a data budget.
MT-ACT leverages data multiplication via semantic augmentations and action representations to
drive efficiency gains in low-data settings.

• MT-ACT ’s architecture can effectively ingest multi-modal trajectory data to recover a single pol-
icy that can perform a diverse set of tasks through language instructions. Through extensive
real-world experiments, we show our agent is capable of exhibiting 12 manipulation skills.

• We perform extensive generalization studies to demonstrate that MT-ACT is 40 % more perfor-
mant than alternatives, exhibits much superior generalization to diverse novel scenarios, and is
amenable to improvements and extensions during deployment through fine-tuning.

• We meticulously recorded all the data collected during the course of the project which we are open-
sourcing as part of RoboSet- one of the largest open-source robotics dataset on commodity
hardware. It contains high-quality human teleOp trajectories spanning a balanced distribution of
12 skills across 38 tasks in diverse kitchen scenes.
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Figure 2: Two stage framework: [Left] Semantic augmentation stage diversifies the robot data offline us-
ing inpainting augmentations at no extra human/robot cost. [Right] Policy learning stage trains language-
conditioned policy using MT-ACT – multi-task action-chunking transformers – which leverages efficient action
representations for ingesting multi-modal multi-task data into a single multi-skill multi-task policy.

2 Related Work

Frameworks for Scaling Robot Learning. Given the cost of supervision in robot learning, self-
supervised learning [12, 13, 14] methods leveraging large unlabeled datasets have been a dominant
paradigm in efforts towards building general-purpose agents. Large-scale simulations [15, 16, 17,
18] have also been leveraged with the hope of learning a general multi-task policy for diverse tasks
[19, 20, 21, 22, 23, 24] first and then transferring it to the real world via sim2real[25, 26, 27, 28].
However, many existing multi-task RL works focus on narrow domains in simulation [22, 29], and
those in the real-world show limited generalization and task diversity [30, 9]. While other works
[19, 20, 31] focus on multi-task settings in diverse scenarios, they restrict to evaluating trained
policies mostly in simulation. By contrast, our work focuses on a large, diverse set of real-world
manipulation tasks. Recently, many works have used imitation learning with large-scale real-world
robot tele-operation datasets of high quality [2, 3, 32, 1, 33, 34] . While early works collect limited
real-world data [3, 33], more recent approaches [1, 5, 7] collect much larger datasets. In fact, [5]
gathers, possibly, the largest dataset (≈ 130K demonstrations) outside bin and place settings and
shows impressive generalization with skills learned using this data. Our work is similar in spirit, i.e.,
we focus on real-world manipulation tasks and aim to learn a multi-task policy using limited real-
world demonstrations. However, unlike [1], we avoid toy environment setups and focus on realistic
real-world kitchen setups with clutter and multiple feasible tasks in a scene. Additionally, our agents
exhibit a much greater diversity of skills than [5, 7, 28] while being trained only on 7.5k trajectories,
as opposed to 135k in [5]. Importantly, we collect our data with commodity hardware (see Figure 6)
and are making it readily available to robotic researchers worldwide.

Alternate Data Sources in Robotics. Recent successes of large-scale self-supervised approaches
within both language and vision communities have showcased the advantage of large-scale data.
Many recent works propose using pre-trained visual representations trained primarily on non-robot
datasets [35, 36], for learning control policies [37, 38, 26, 39, 40]. Most of these works focus
on single-task settings [37, 38, 41, 42], or in simulated robot environments [26, 39]. Given the
inherently large cost of collecting real-world robotics datasets, many works have focused on using
alternate data sources such as language [43, 44, 45, 46], human videos [47, 48, 49, 50, 51, 52, 53,
54, 55], and generative augmentations [56, 57, 9, 8, 10]. Our work is most similar to the latter set
of works, some of which use diffusion models to generate augmentations for data collected in the
real world. However, unlike some prior works [9, 8] our approach is fully automatic. We do not
need segmentation masks [9] or object meshes [8] for generating augmentation data. Overall, our
work is most similar to [10] which adapts a pre-trained open-world object detection model [58] for
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Table 1: Open-source real-world manipulation dataset landscape: RoboSet(ours) is of the largest
open-source robotics datasets. It contains high-quality human teleOp trajectories spanning a bal-
anced distribution of 12 skills across 38 tasks in diverse kitchen scenes.

Trajectories Tasks Skills Scenes Source
RoboSet (MT-ACT ) 7,500 38 12 10 TeleOp
RoboSet (kitchen) 30,050 38 12 10 TeleOp
RoboSet (bin) 70,000 10 4 1 Heuristics
RoboSet (full) 100,050 48 12 11 TeleOp+Heuristics

BridgeData [1] 33,200 72 8 10 TeleOp
BC-Z [6] 25,000 100 9 N/A TeleOp
RoboTurk [3] 2,100 N/A 3 1 TeleOp

Amazon Pick-Place [61] 100,000 N/A 1 1 Heuristics
RoboNet [2] 162,000 N/A 2 7 Heuristics
BAIR Pushing [62] N/A N/A 1 1 Heuristics

generating segmentations that are used with text-guided diffusion models to generate augmentations.
However, our approach does not require any further fine-tuning of a separate module for open-
vocabulary segmentation and language grounding. More importantly, we further investigate scaling
laws with respect to semantic data augmentations to understand the impact of augmentations in
aiding test-time generalization to unseen scenarios.

3 MT-ACT : Multi-Task Action Chunking Transformer

To learn generalizable manipulation policies, it is essential for robots to be exposed to rich and
diverse experiences, encompassing a wide range of skills and contextual variations. However, oper-
ational costs and real-world challenges in collecting such extensive datasets pose a practical limit on
their overall size. Our goal is to address these limitations by developing a paradigm that can learn
effective multi-task agents under a limited data budget.

Our approach consists of two stages (Figure 2) – The first stage multiplies the pre-collected dataset
by creating a diverse collection of semantic augmentations over the existing robot’s experiences.
These semantic augmentations recreate a particular robot demonstration into several demonstra-
tions, each with a different semantic context (objects, textures, backgrounds, etc), at no extra robot
or human cost. Such data diversification incorporates real-world semantic priors into the multi-
task manipulation agents preparing them to account for out-of-distribution scenarios they might
encounter during deployment. Second, we explore techniques to learn robust skills from limited
skill data, adapting design choices from previously limited single-task settings to the context of
large-scale generalization in multi-task multi-scene manipulation tasks with diverse skills. The sec-
ond stage employs a language-conditioned novel policy architecture to train robust agents capable
of recovering multiple skills from multimodal datasets. To model the diverse multi-modal multi-task
augmented datasets, we employ a Conditional Variational Autoencoder (CVAE) [59] to identify ac-
tion distribution modes. This enables us to fit a high-capacity Transformer [60] conditioned on the
CVAE encodings, effectively capturing the variations and dependencies in the augmented dataset.
Our policy also leverages the fact that robot movements are temporally correlated. Predicting action
chunks [11] instead of per-step actions, leads to smoother behaviors and mitigation of covariance
shift commonly observed in the low data imitation learning regime. Next, we outline the individual
components of our method in detail.

3.1 Dataset

Training a general agent capable of robustly exhibiting a diverse repertoire of skills in novel scenes
and tasks needs exposure to experiences matching this diversity. To align with our goal of building
a data-efficient robot learning paradigm, we restrict ourselves to a frozen pre-collected small but
diverse dataset. In order to capture behavioral diversity, we ensure sufficient coverage over different
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core skills. To achieve this we instantiate different skills in different tasks in different kitchen scenes,
visually illustrated in Appendix A. Instead of a random collection of tasks, we structure groups of
tasks as belonging to be part of a household activity, such that they can be executed in sequence to
obtain a meaningful outcome, such as cleaning a kitchen.
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Figure 3: Skill distribution in terms of % of trajectories with a certain skill in the dataset. We note the wide
coverage across 12 different skills, enabling diverse manipulation behaviors.

The dataset RoboSet(MT-ACT ) we used for this project consists of 7,500 trajectories (Table 1)
collected using human teleoperation. The dataset involves 12 skills expressed across multiple tasks
and scenes. Figure 3 shows the distribution of skills over our dataset. While the commonly used
pick-place skills cover 40% of the dataset, we also include contact-rich skills such as (Wipe, Cap) as
well as skills involving articulated objects (Flap-Open, Flap-Close). We collect the overall dataset
across 4 different kitchen scene instantiations with various everyday objects in the scenes. We
frequently swap each scene instantiation with different variations of objects, thereby exposing each
skill to multiple target objects and scene instantiations. We provide a glimpse of the overall setup
and a subset of objects used in Figure 6, and data composition details in section 4

In Table 1, we compare our dataset with existing open-source robot manipulation datasets. Com-
pared to prior open-source real-world datasets, our dataset includes more skills and a greater diver-
sity of skills and scene variations. RoboSet constitutes one of the largest dataset with commodity
robots collected in the real-world setup. Finally, despite our data diversity, RoboSet(MT-ACT )

used for training our agents is still much smaller in size in comparison to other recent papers that
use proprietary robotic hardware, e.g. RT1 which has 135K trajectories [5], or those that rely on
simulation [28].

3.2 Data Augmentation

Generally useful robot manipulation systems will need to be able to deal with out-of-distribution
scenarios (e.g. different homes and offices). Since the dataset we collect cannot have the diversity
of scenes and objects to the extent we would need for generalization (due to physical access con-
straints), we seek to multiply the dataset by augmenting scenes with diverse variations offline while
preserving the manipulation behavior in each trajectory. Based on recent advances in segmenta-
tion and inpainting models [63, 64], we can distill semantic real-world priors from internet data, to
modify a scene in a structured manner.

Given an initial robot dataset consisting of different trajectories, we augment each trajectory per
frame, to produce new trajectories that preserve the robot behavior in the trajectories which makes
several semantic variations in the scene, per frame. To enable this, we inpaint a part of an image
specified by a mask to a different image introducing objects in the masked region informed by a text
prompt. As opposed to [9, 8, 10] needing manual masks, object templates, etc., our approach is fully
automatic. We use the SegmentAnything model [63] to automatically detect objects in the scene to
be augmented. We apply augmentations separately to the object and the rest of the environment
respecting the object and robot boundaries. See subsection A.1 for additional details.
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Figure 4: Illustration of the data augmentations that we develop to rapidly multiply limited robot datasets
with diverse semantic scene variations. In (a) we show the scene around the robot and the interaction object
changing. In (b), we show the interaction object itself changing while preserving the rest of the scene.

3.3 MT-ACT Architecture

In order to develop generalizable robot manipulation policies within real-world constraints of col-
lecting limited data, we need to design efficient policy architectures. In scenarios that have sufficient
coverage within the training data, we want the policies to stay close to nominal behaviors (efficient
imitation), and also want to generalize to new contexts that are unseen during training (efficient task
conditioning). In addition, we want the policies to exhibit temporally correlated behaviors that ac-
complish a task with minimal compounding errors, and incorporate action-chunking [11] to achieve
this.
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Figure 5: Policy architecture for MT-ACT . We use a CVAE that learns latent
encodings for action sequences to implicitly identify different modes in the
data. A transformer takes as input a latent code, language embedding of the
task, and embeddings from four camera views, to output an action sequence.

The policy architecture for
MT-ACT is designed to be
a Transformer model of
sufficient capacity that can
handle multi-modal multi-
task robot datasets. In
order to capture multi-
modal data, following prior
works [11] we incorporate
a CVAE that encodes ac-
tion sequences into latent
style embeddings z. The
decoder of the CVAE is the
Transformer policy that conditions on latents z. This formulation of expressing the policy as a gen-
erative model helps in effectively fitting to the multi-modal teleop data, without ignoring regions
of a trajectory crucial for precision, which are also likely to be more stochastic. In order to model
multi-task data, we incorporate a pre-trained language encoder that learns an embedding T of a
particular task description. To mitigate issues of compounding error, at each time-step, we predict
actions H steps in the future and execute them through temporal-smoothing of overlapping actions
predicted for a particular time-step [11]. For improving robustness to scene variations, we provide
the policy with four different views of the workspace through four cameras.

The transformer encoder takes as input four observation views at the current time-step, o1:4t , the
current joint pose of the robot jt, the style embedding from the CVAE z, and the language embedding
T . We use a FiLM based conditioning [65, 5], in order to ensure that the image tokens are able to
reliably focus on the language instruction, such that the policy doesn’t get confused about the task
when multiple tasks are possible in a scene. The encoded tokens go to the decoder of the Transformer
policy with fixed position embeddings, which finally outputs the next action chunk (H actions) from
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the current time-step. For execution, we average over all overlapping actions predicted for a current
time-step (As H > 1, the action chunks overlap), and execute the resulting averaged action.

4 Experimental Design

Through experiments, we want to understand the following research questions

• How does MT-ACT perform, quantitatively and qualitatively, on a large set of vision-based robotic
manipulation tasks? How does it generalize to new tasks, objects, and environments?

• Does data augmentation improve robustness to noise/distractors?
• Does data augmentation improve policy generalization (i.e. scenes with new target objects)?
• Does the policy architecture of MT-ACT enable efficient learning with high performance?
• Does action chunking help with temporally consistent trajectories, achieving higher success?

To answer these research questions we instantiate our framework in the real world using commodity
hardware and objects commonly used in everyday kitchens. Next, we outline the system and dataset
used to investigate our questions and then describe the different generalization axes for evaluation.

Robot hardware. Figure 6 shows our robot environment that consists of a kitchen setup with
everyday objects, a Franka Emika Panda arm with a two-finger Robotiq gripper fitted with Festo
Adaptive Fingers, three fixed cameras (top, left, right), and a wrist camera mounted above the end-
effector. The four camera views provide complementary perspectives of the workspace, and we
utilize all of them for robust policy learning.

Data collection. Our robot manipulation dataset for the experiments consists of 7,500 trajectories,
collected through tele-operation by a human operator, over a period of two months. We collect all
the data in different kitchen-like environments with a Franka Emika [66]. The tele-operation stack
is based on [67] and uses VR-controllers. The dataset comprises of diverse manipulation skills like
opening/closing drawers, pouring, pushing, dragging, picking, placing, etc. across several everyday
objects. Figure 3 shows the distribution of skills in the dataset. Additional details regarding the
dataset, along with sample trajectories, and a link to the entire dataset are in the project website�
linked with the paper. We will publicly release this dataset, as part of the larger RoboSet described in
subsection 3.1. To our knowledge, this is one of the largest open-source robot manipulation datasets
with the most commonly used non-proprietary robot hardware (Franka Panda [66]) containing di-
verse behaviors beyond pick and place.

*OLPSVH�RI�2EMHFWV�LQ�5RER6HW�DQG�07�$&7

*OLPSVH�RI�2EMHFWV�LQ�5RER6HW5RERW�6HWXS

Figure 6: A zoomed-out view of the robot environment, showing all four cameras in the scene (in colored
squares) and a glimpse of the diverse set of objects in the dataset, used for all our experiments.

Generalization Axes. Following prior work [5, 6, 20], we define each task to consist of a particular
language command like ‘pick a cube of butter from the drawer on the left‘ that defines an object to
be interacted with (butter), a skill to be executed (pick), and some context (drawer on the left). We
consider evaluations in terms of different levels of generalization, illustrated visually for a scene in

7
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Averaged over activities

L1: Object Poses, Lighting L2: Textures, New Distractors L3: New Tasks, New Object-Skills

Figure 7: Visualization of different generalization axes, evaluating effectiveness with lighting variations and
smaller scene changes such as object poses (L1), robustness to significant scene variations (L2), generalization
to unseen tasks (L3). Bottom-Left: Results for commonly used L1-generalization. Bottom-Right: Results for
different levels of generalization. See 9 for L4-generalization results.

Fig. 7: L1(Effectiveness): Generalization of the agent to variations in object positions and orien-
tations, and in lighting conditions. L2 (Robustness): New background, different distractor object
variations, and unseen distractor objects introduced in the scene. L3 (Generalization): New tasks
never seen before, including new object-skill combinations. L4 (Strong Generalization): New
kitchen never seen before (see Figure 9 Left).

5 Experiments

Through detailed real-world robot manipulation experiments, we evaluate the proposed framework
for sample efficiency, and generalization of the agent to diverse scenes.

Baselines. We compare multiple baselines that use visual policy learning for robotics. Single Task
Agents: We compare ACT-based policies [11] trained for individual tasks, and evaluated on the
respective tasks. These policies don’t need to generalize across tasks and scene, and represent
an approximate oracle performance per task. Visual Imitation Learning (VIL): We compare with
regular language-conditioned multi-task visual imitation learning. CACTI [9]: This baseline is a
prior framework for multi-task learning that also uses some scene augmentations for generaliza-
tion. RT1 [5]: We re-implement a baseline RT1-like agent. BeT [68]: We modify the Behavior
Transformer architecture with language conditioning and train it in a multi-task manner.

Next, we present results and analysis from our large-scale real-world experiments that attempt to
understand the research questions presented in section 4.

5.1 Multi-Task Real-World Results

Performance. Figure 7 (Left-Bottom) compares our proposed MT-ACT policies against commonly
used imitation learning architectures. In this figure (Figure 7 Left-Bottom) we only plot results for
L1-generalization since this is the standard setting most other imitation learning algorithms use.
From the above figure we see that all approaches which only model next step actions (instead of
sub-trajectories) perform quite poorly. Among these approaches we find that action-clustering based
approaches (BeT [68]) for multi-task settings, perform significantly worse. We believe this happens
because naive clustering in very diverse action distributions may not result in clusters that generalize
across diverse skills. Additionally, since we are operating in the low data regime, we observe that
RT1-like approaches that require a lot of data do not perform well in this setting. By contrast, our
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Figure 8: On the left we show results for MT-ACT , its ablated variant without semantic augmentations, and
baselines, for different activities, with L1, L2, L3 levels of generalization. On the right, we show results for
different levels of generalization averaged over different activities. We can see that MT-ACT achieves over
30-40% success rate than baselines in L2, and L3 generalization levels.

MT-ACT policy which uses action-checking to model sub-trajectories significantly outperforms all
baselines. Overall, our further demonstrating the relative sample-efficiency of MT-ACT

Generalization and Robustness. Figure 7 (Bottom-Right) shows the results for all methods across
multiple levels of generalization (L1, L2, and L3). Recall that these levels of generalization include
diverse table backgrounds, distractors (L2) and novel skill-object combinations (L3). From Fig-
ure 7 (Bottom-Right) we see that by virtue of semantic augmentations and action representations,
MT-ACT significantly outperforms all the baselines we consider. More interestingly, we see that se-
mantic augmentations have less effect for L1-generalization (≈ 30% relative), they provide a much
more significant improvement for both L2-generalization (≈ 100% relative) and L3-generalization
(≈ 400% relative). Since semantic augmentations affect both scenes (backgrounds and distractor
objects) as well as target objects being manipulated they provide useful support for the policy to
achieve increasing levels of generalization.

Additionally, in Figure 8 we also separately report generalization results for each ac-
tivity separately. From Figure 8 we see that each our proposed semantic augmen-
tations positively affect each activity’s performance. Interestingly, we find that for
some of the harder activities (Making-Tea, Stowing-Bowl, Heating Soup) the rel-
ative improvement in performance due to semantic augmentations is much larger.

/���1HZ�(QYLURQPHQW�*HQHUDOL]DWLRQ�5HVXOWV

Figure 9: Only MT-ACT policies can perform
tasks in a completely new kitchen environment
(L4).

Overall, our results show that traditional visual imi-
tation learning (without any augmentations) i.e. VIL
and RT1 trained on our relatively small dataset, com-
pletely fail for L3 and L2, indicating a lack of gen-
eralization to unseen scenarios, due to data paucity.
Finally, we also test our policy on a completely new
kitchen with novel objects, arrangements, distrac-
tors, i.e., L4 generalization. Figure 9 (Left) visu-
alizes this new kitchen environment. We evaluate all
methods on this new kitchen for 3 tasks. Figure 9
(Right) shows the results for each method on this
new environment. Specifically, we obtain an average
success rate of 25% for MT-ACT (and 0 for all the
other baselines). We see that MT-ACT without se-
mantic augmentations also fails completely on this
new environment thus indicating the benefits of our approach for zero-shot adaptation.
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Figure 10: We shows results of the different ablation studies and analysis in section 5.2, showing the benefits
of FiLM conditioning, the effect of varying chunk sizes in the predictions, the number of augmentations per
frame for multiplying the dataset, and the feasibility of fine-tuning MT-ACT for improved deployment.

5.2 Ablation

We ablate the different design choices we make in our proposed architecture.

Task Specification using FiLM conditioning. For language conditioned multi-task policy, as de-
scribed in section 3.3, we use a FiLM based conditioning [65] for the language embedding of task
descriptions [69]. Here, we compare this design choice with a simple concatenation-based condi-
tioning of the language embeddings with image tokens for the policy. In Fig. 10 we show results for
this ablation study averaged over all activities, and we observe a 5-10% drop in performance of the
version of MT-ACT without FiLM conditioning.

Chunk Size for Action Representations. Here we train variants of MT-ACT with different chunk
sizes 10, 20, 40. In Fig. 10, we see that a chunk size of 20 performs the best, with a 0-5% drop in
performance with chunk size 10. In addition, large chunk size 40 performs significantly worse with
more than 20% drop in performance indicating the inability of the policy to correct errors as the
chunks grow in size.

Num of aug per frame. We ablate for the number of augmentations per frame, to see if more
augmentations help MT-ACT in learning a more performant policy. From Fig. 10, we see that the
number of augmentations per frame is strongly correlated with overall performance gains. Thanks
to the real-world semantic priors injected via data augmentation, the gains are more notable for L2
and L3 levels where out-of-domain generalization is required from the policy.

Robustness analysis. We perform several robustness analyses of the universal MT-ACT agent, by
manually perturbing the scene during evaluation, and also introduce system failures like blocking the
views from one, two, or three cameras. On average, we find that the policy is robust to these strong
active variations, and can recover and solve the specified task in about 70% of the 20 evaluations we
run for this analysis. Videos showing these robustness results are in the supplementary.

Plasticity. Here, we evaluate the feasibility of adding additional capabilities to the universal
MT-ACT agent, without requiring significant re-training. We take the trained agent (on 38 tasks)
and fine-tune on (1/10)th of the original data combined with data for a new held-out task (placing
toast in toaster oven). The new task has 50 trajectories, multiplied with 4 augmentations per frame,
for a total of 250 trajectories. In Fig. 10 on the right, we see that the fine-tuned agent is able to learn
this new task, without significantly deteriorating in performance on the previous 6 activities. Also,
it achieves slightly better L2, L3 performance than a single-task policy trained only on augmented
data of the new task, indicating efficient data re-use.

6 Discussion and Limitations

We developed a framework for sample-efficient and generalizable multi-task robot manipulation in
the real world. Our framework is based on rapidly multiplying a small robotics dataset through se-
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mantic scene augmentations, and training a multi-task language-conditioned policy that can ingest
the diverse multi-modal data obtained through augmentations. We combine and adapt several de-
sign choices like action chunking and temporal aggregation proposed in the context of single-task
policies, and show that they yield significant boosts in performance even in the multi-task settings
we consider. Finally, we release one of the largest robot manipulation datasets to date involving over
12 skills in kitchen environments which we hope will facilitate further research in developing robot
manipulation systems with diverse real-world generalization. An important limitation of our work is
that all the tasks consist of individual skills, and an interesting direction for future work would be to
develop approaches for composing skills automatically for solving long-horizon tasks. Another lim-
itation is that we do not explore the axes of language generalization, and use language embeddings
from pre-trained encoders as is, without any modifications. Future work could investigate better
language conditioning that is more flexibly adaptable to changes in task descriptions.

Acknowledgements

We acknowledge various contributions, large and small, from the entire Embodied AI team at
Meta. The project has also significantly benefitted from brainstorming sessions from – Aravind
Rajeswaran, Chris Paxton, Tony Zhao, Abhishek Gupta, and individual contributions from Giri
Anantharaman, Leonid Shamis, Tingfan Wu, Priyam Parashar, Chandler Meadows, Sahir Gomez,
and Liyiming Ke. We thank Gaoyue Zhou, Raunaq Bhirangi, Sudeep Dasari , Yufei Ye, Mustafa
Mukadam, Shikhar Bahl, Mandi Zhao, Wenxuan Zhou, Jason Ma, and Unnat Jain for helpful dis-
cussions at different stages of the project.

References
[1] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and

S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.

[2] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. In Conference on Robot Learning, pages
885–897. PMLR, 2020.

[3] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imita-
tion. In Conference on Robot Learning, pages 879–893. PMLR, 2018.

[4] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[6] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022.

[7] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-
based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[8] Z. Chen, S. Kiami, A. Gupta, and V. Kumar. Genaug: Retargeting behaviors to unseen situa-
tions via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.

[9] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and V. Kumar. Cacti:
A framework for scalable multi-task multi-scene visual imitation learning. arXiv preprint
arXiv:2212.05711, 2022.

11



[10] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,
B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint
arXiv:2302.11550, 2023.

[11] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[12] L. Pinto and A. Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In 2017 IEEE international conference on robotics and automation (ICRA), pages
2161–2168. IEEE, 2017.

[13] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113–1132. PMLR, 2020.
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A Dataset details

MT-ACT uses 7,500 human teleoperated demonstrations from the RoboSet dataset. The full Ro-
boSet is much more diverse and consists of 9,500 teleoperated demonstrations, 11,500 kinesthetic
demonstrations in various kitchen and table-top settings. In addition, it contains about 70,000 tra-
jectories in bin settings collected through heuristics. MT-ACT dataset consisted of RGB and depth
frames from four camera views (right, left, top, and wrist) as shown in figure 6, Franka joint po-
sitions and velocities, end-effector/gripper position and velocities, controls applied to the Franka
joints and end-effector/gripper, and the time-steps (40 steps).

The data was collected using an Oculus Quest 2 controller on a kitchen table-top setup at 5Hz and
saved in HDF5 format. Rollouts from the data are shown in figure 11.

Figure 11: Rollouts of some tasks (visualizing four views horizontally, and five timesteps vertically) in the
RoboSet, used for training.

A.1 Details on Semantic Augmentations

We enable two different types of scene augmentations for multiplying data, for enabling generaliza-
tion to different scenes with novel distractors, and to scenes with different objects for interaction:

• Augmenting interaction object: Given the joint angle of the robot in a frame of a trajectory, we
use forward kinematics to recover the robot mask as well as the end-effector position of the robot.
We use the end-effector location to prompt SegmentAnything [63] for obtaining a mask of the
object being interacted with. We then inpaint the region of the object being interacted with, based
on a text prompt, and keep it consistent across time by tracking with TrackAnything [64].

• Augmenting background: We use SegmentAnything [63] to randomly choose a set of objects in
the background that do not overlap with the robot mask, and the mask of the object being interacted
with, and inpaint the scene based on the resulting overall mask over all the objects identified by
SegmentAnything.

Note that our augmentation approaches are all automatic and do not require any manual effort in
specifying masks or object meshes etc. This is in contrast to prior works that require manual spec-
ification of a fixed mask per trajectory [9], and those that require templates of object textures and
meshes [8]. In addition, unlike [10], we do not require training any further modules for identifying
objects through open-vocabulary detection that relies on language grounding.
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Figure 12: Qualitative results of rollouts for L2 and L3 levels of generalization, showing tasks open drawer
and pick a slab of butter. For L2 we introduce different distractors in the scene, and change the background
tiles. For L3, in addition to changes in L2 we introduce different task objects, for example by replacing a slab
of butter with a piece of watermelon, or a banana.

B Train and Evaluation Details

In this section we present training and evaluation details both for our methods and the baselines.

B.1 Robot Environment and Evaluation Details

The robot environments for evaluation consist of table-top kitchen setups with diverse real objects
in the scene. There are 4 cameras providing complementary views of the workspace. The robot is a
Franka Emika Panda arm operated with joint position control, with an action space dimension of 8
(7 joint positions, 1 dimension for end-effector open/close). The robot arm has a two-finger gripper,
and a wrist camera. The robot is operated at a frequency of 5Hz.

B.2 Hyper-parameters for MT-ACT and baselines

Here we provide hyper-parameter details of the policy architecture. We train all policies for 2000
epochs. For the overall MT-ACT agent, trained on the augmented dataset, this takes about 48 hours
on a single 2080Ti GPU with a batch size of 8.

For our baseline implementations we did a hyperparameter search for relevant parameters. For each
baseline implementation, [5] we adapt them from their officially released code. Specficially, for
RT1 [5] we use https://github.com/google-research/robotics_transformer for refer-
ence. On the other hand, for [68] we use https://github.com/notmahi/bet. To provide lan-
guage conditioning for both baselines we use similar FiLM [65] implementation as our approach.

For hyper-parameters we use 3 different discrete action sizes – 64, 256 and 512, we vary the learning
rates from (1e−3, 1e−4). We use the AdamW optimizer with a weight decay range in (1e−2, 1e−
3, 1e − 4). Our RT-1 transformer uses 6 layers with 8 parallel attention heads and each head with
size 64. Each transformer uses a feedforward layer with intermediate sie of 1024. On the other
hand for [68] we experiment with 3 different action cluster sizes – 64, 256 and 512. We use a
similar transformer implementation for BET as RT-1. Finally, for real-world evaluation we use the
hyper-parameters with lowest validation loss.

C Additional Results

In this section we present some additional results. First, we present results and discuss how well
does our multi-task policy perform when compared to single task policies. Figure 13 compares
single-task policy performance against two sets of multi-task policies for the Heat Soup activity.
For the first multi-task Single-Activity policy (MT Single-Activity) we only train it across all tasks
within the same activity. For the latter multi-task universal multi-activity policy (MT-Universal) we
train it across all tasks in all activities. From Figure 13 we see that for most tasks MT Single-Activity
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Table 2: Hyper-parameters for MT-ACT

Name Value
learning rate 1e-5

batch size 8
feedforward size 3200
Attention heads 8

chunk size 20
dropout 0.1

Transformer encoder layers 4
Transformer decoder layers 7
Language Embedding size 384

Table 3: Hyper-parameters for RT-1 [5]

Name Value
learning rate 1e-4

discrete action tokens 256
batch size 64

feedforward size 1024
Attention heads 8

dropout 0.1
Transformer layers 6

Language Embedding size 384

0
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Flap-Open Oven Pick Bowl Slide-In Bowl Flap-Close Oven

Single-Task Multi-Task (Single-Activity) Universal (Multi-Activity)

Figure 13: Single-Task vs Multi-Task comparison for Heat Soup activity. Multi-Task (Single Activity) repre-
sents a multi-task policy trained on only 4 tasks in Heat-Soup activity.

is able to outperform single task policies. Additionally, single-task policies are able to perform well
on most tasks (≈ 80%) except the more challenging constrained manipulation tasks (slide-in-bowl)
(≈ 20%). Finally, we also observe that MT-Single-Activity can outperform MT-Universal for most
tasks. This happens because the universal agent is trained to perform a much larger variety of tasks.
Given the very large variety of skills (Figure 3), such multi-task training can result in some negative
transfer compared to training on a narrowly defined skills. We believe these reduced multi-task
results present useful avenues for future research. Finally, in Table 4 we show results for all tasks
in all activities using our single universal policy. From the below table, we see that the universal
policy is able to perform well on most tasks except the more challenging tasks such as grasping
small deformable objects (Pick Tea: 40%, Pick Lid: 50%).

Heat Soup Success Serve Soup Success Baking Prep Success

Flap-Open Oven 80% Flap-Open Oven 90% Slide-Open Drawer 70%
Pick Bowl 60% Pick Bowl 50% Pick Butter 70%
Slide-In Bowl 70% Slide-Out Bowl 80% place Butter 90%
Flap-Close Oven 50% Flap-Close Oven 80% Slide-Close Drawer 90%

Making Tea Success Cleaning Up Success Stow Bowl Success

Uncap Lid 80% Pick Lid 70% Slide-Open Drawer 70%
Place Lid 90% Cap Lid 100% Pick Bowl 70%
Pick Tea 40% Slide-Close Drawer 90% Place Bowl 80%
Place Tea 60% Flap-Close Oven 80% Slide-Close Drawer 80%
Pick Lid 50% Pick Towel 90%
Cap Lid 70% Wipe Counter 90%

Table 4: Results for different tasks using the learned universal policy.
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